Resonance Disorders and Velopharyngeal Dysfunction: Evaluation and Treatment

Ann W. Kummer, PhD, CCC-SLP
Cincinnati Children’s Hospital Medical Center

Financial Disclosures

• Employment:
 – Cincinnati Children’s Hospital Medical Center

• Royalties
 – Author of the text called *Cleft Palate and Craniofacial Anomalies: The Effects on Speech and Resonance*, Delmar Cengage, 2008.
 – Developer of *Oral and Nasal Listener (ONL)*, Super Duper Publications

• Honoraria
 – Seminars at state conferences and other events
Non-Financial Disclosure

• Author of the SNAP test for nasometry
• Serve on committees for the American Cleft Palate-Craniofacial Association
• Serve on various advisory boards

Seminar Outline
Resonance Disorders and Velopharyngeal Dysfunction

- Normal resonance
- Resonance disorders
- Normal velopharyngeal function
- Velopharyngeal dysfunction (VPD)
 - Velopharyngeal insufficiency (VPI)
 - Velopharyngeal incompetence (VPI)
 - Velopharyngeal mislearning
 - Effects of CLP/VPI on speech and resonance

Evaluation and Treatment

- Evaluation
 - Perceptual evaluation
 - Intra-oral evaluation
 - Instrumental evaluation
- Treatment of VPI
 - Surgical procedures
 - Prosthetic devices
- Speech therapy
- Referrals
Normal Resonance

What is resonance for speech?

- Modification of the sound that is generated from the vocal cords thru selective enhancement of frequencies
- Provides the quality of perceived sound during speech
What determines resonance for speech?

- Size and shape of the resonating cavities
 - pharyngeal cavity
 - oral cavity
 - nasal cavity
- Function of the velopharyngeal valve

Size and Shape of Cavities

- Shorter/smaller cavities: enhance higher formants
- Longer/larger cavities: enhance lower formants
Size and Shape of Cavities

Resonance is affected by the following:
• Length and volume of pharynx
• Size and shape of oral cavity
• Configuration of nasal cavity

• Differences between
 – children and adults
 – men and women
 – tall people and short people
• Makes voice quality unique to individual
Resonance and Vowels

- Vowels are “resonance sounds”
- They are produced by changing the size and shape of the oral (resonating) cavity

Resonance Disorders

- Hypernasality
- Hyponasality (denasality)
- Cul de sac resonance
- Mixed resonance
Hypernasality

- Too much sound resonating in the nasal cavity
- Usually due to VPI or fistula
- Most perceptible on vowels

Hypernasality

- Voiced oral consonants become nasalized (m/b, n/d, etc.)
 - Obligatory distortion
- Other consonants may be substituted by nasals
 - Compensatory production
Hyponasality

- Not enough nasal resonance on nasal sounds (m, n, ng)
- Due to nasal obstruction
- Nasal phonemes sound similar to oral cognates (b/m, d/n, g/ng)
- Also noticeable on vowels

Cul de Sac Resonance

- Sound resonates in a cavity (oral, pharyngeal or nasal), but cannot get out
- Due to blockage in the vocal tract
Cul de Sac Resonance

- Voice sounds muffled and low in volume
- Sound is absorbed (like a sponge) in the cavity

Cul de Sac Resonance
Types and Causes

- Oral cul de sac resonance
- Nasal cul de sac resonance
- Pharyngeal cul de sac resonance
Oral Cul de Sac Resonance

- Sound is mostly in the oral cavity
- Due to small oral cavity size or small mouth opening (microstomia)
- Parents describe speech as “mumbling” (which is not opening the mouth very much)

Nasal Cul de Sac Resonance

- Sound is mostly in the nasal cavity
- Due to VPI and nasal obstruction from:
 - a deviated septum
 - stenotic nares
 - maxillary retrusion
- Common with cleft palate and craniofacial anomalies
Pharyngeal Cul de Sac Resonance

- Sound is mostly in the pharynx
- Common in patients with very large tonsils

Pharyngeal Cul de Sac Resonance

- Has been called “potato-in-the-mouth” speech
- Enlarged tonsils are the “potatoes”
Pharyngeal Cul de Sac Resonance

- Enlarged tonsils block sound transmission to oral cavity

Mixed Resonance

- Hypernasality and/or nasal emission on oral sounds and hyponasality on nasal sounds
- Due to:
 - VPI and obstruction
 - Apraxia
Normal Velopharyngeal Function

Structures Active in VP Closure

- Velum (Soft Palate)
- Lateral Pharyngeal Walls (LPWs)
- Posterior Pharyngeal Wall (PPW)
Velum: Rest

Velum (Soft Palate)

- Moves in a superior and posterior direction
- Has a type of “knee” action
- Moves toward the posterior pharyngeal wall
Velum: During Speech

Physics and Flow

- Water (and air) flow in a forward direction until something stops it
- An obstructing object will redirect the flow
Velopharyngeal Valve and Flow

- Due to the physics of airflow, even a small opening will be symptomatic for speech.

Lateral Pharyngeal Walls (LPWs)

- Move medially to close against the velum or in some cases, behind the velum
Posterior Pharyngeal Wall (PPW)

- Has slight anterior movement toward the velum
- In some speakers, there’s a bulge called a Passavant’s ridge (formed by muscle contraction)

Passavant’s Ridge
VP Valve during Speech

- Velopharyngeal valve is closed for oral sounds
 - Most consonants (air pressure sounds)
 - All vowels (resonance sounds)
- Velopharyngeal valve is open for nasal sounds (m, n, ng)

Purpose of VP Valve

- Directs transmission of sound energy and air flow in the oral and nasal cavities during speech
Muscles of VP Closure

- Levator veli palatini (velar “sling”)
- Superior constrictor (pharyngeal ring)
- Palatopharyngeus (post. faucial pillar)
- Palatoglossus (ant. faucial pillar)
- Musculus uvulae (bulge on nasal surface)
Motor Nerves of VP Function

- Glossopharyngeal (IX)
- Vagus (X)
- Accessory (XI)
- Trigeminal (V)
- Facial (VII)

Sensory Nerves of Velum

- Vagus (X)
- Glossopharyngeal (IX)
Normal VP Closure
(Nasopharyngoscopy)

Variations in VP Closure

• Coronal Pattern
 – Due mostly to velar movement

• Sagittal Pattern
 – Due mostly to LPW movement

• Circular Pattern (with and without Passavant’s ridge)
 – All structures move and close like a purse string
Patterns of Closure

Variations in VP Closure

- Non-Pneumatic:
 - gagging, vomiting, swallowing
- Pneumatic:
 - Positive (+) pressure: blowing, whistling, speech
 - Negative (-) pressure: sucking, kissing
VPI: Velopharyngeal Insufficiency and Incompetence

- Velopharyngeal insufficiency- abnormal structure
- Velopharyngeal incompetence- abnormal neurophysiology

Velopharyngeal Insufficiency

![Diagram of Velum (soft palate)]
VP Insufficiency

- History of cleft palate
- Submucous cleft palate (overt or occult)
- Short velum or deep pharynx (cranial base anomalies)
- Irregular adenoids
- Enlarged tonsils

History of Cleft Palate

- Velum may be too short following repair
- Velum may have a notch on posterior nasal surface
Submucous Cleft Palate
Nasal Surface

Deep Pharynx
- Can be due to cranial base or cervical spine anomalies (i.e., Klippel-Feil syndrome or craniosynostosis)
Adenoids

- Positioned in usual site of VP contact
- Closure is velo-adenoidal in kids
- Normal VP closure requires a tight seal
- Adenoid protrusion or indentation can affect closure

Irregular Adenoids
Enlarged Tonsils

- Can extend into pharynx, interfering with LPW and velar movement or preventing a tight VP seal

Nasopharyngoscopy of Tonsil

- Images showing nasopharyngoscopy of tonsils.
VP Insufficiency
Following Surgery or Treatment

- Adenoidectomy
- Maxillary advancement
- Treatment of nasopharyngeal tumors

Adenoidectomy

- Sudden increase in the nasopharyngeal dimension can cause VPI
- Often temporary and resolves within 6 weeks
- Permanent VPI is a risk, especially with history of cleft or submucous cleft
VPI Post Adenoidectomy

- Caused by a change in the structure
- *Speech therapy CANNOT change structure*
- *Exercises don’t work* because the problem is not the muscles
- *VPI post-adenoidectomy requires surgical intervention* by a surgeon who specializes in clefts and VPI

Le Fort I Maxillary Advancement
Maxillary Advancement

- Done surgically or through distraction
- Corrects Class III malocclusion and midface retrusion
- Improves aesthetics and articulation (obligatory distortions)
- Often done for patients with history of cleft

Pre Maxillary Advancement
Post Maxillary Advancement

- Moving maxilla forward also moves velum forward
- Velum may stretch and lengthen; LPW movement may increase
- VPI is a risk, especially in patients with history of cleft or submucous cleft
Treatment for Oral Cavity of Nasopharyngeal Tumors

- Radiation therapy shrinks abnormal and surrounding normal tissue
- Ablative surgery removes tissue
- Both increase nasopharyngeal space, making closure more difficult

Velopharyngeal Incompetence
Causes of VP Incompetence

- Cranial nerve damage
- Central neurological dysfunction
 - Injury or neuromuscular disease

Cranial Nerve Damage

- Can cause velar paralysis or paresis
- Often unilateral
- Affected side of velum droops, causing a lateral gap
- Uvula points to unaffected side
- Common in hemifacial microsomia
Central Neurological Dysfunction

• Injury
 – Head trauma/traumatic brain injury
 – Cerebral palsy
 – CVA/stroke

• Neuromuscular Disease
 – Myasthenia gravis, muscular dystrophy, etc.

May cause:
• Hypotonia
• Dysarthria
• Apraxia of speech

• All of these can cause VP incompetence
Hypotonia

- Can cause poor or weak velar and pharyngeal movement
- Pharyngeal hypotonia is common with velocardiofacial syndrome

Dysarthria

- Affects all subsystems of speech:
 - Respiration
 - Phonation
 - Articulation
 - Velopharyngeal function
Characteristics of Dysarthria

- Slurred, imprecise articulation
- Poor breath support
- Decreased volume
- Slow rate
- **Hypernasality** - common

Characteristics of Dysarthria

- Poor movement of anterior structures (for articulation) and posterior structures for (VP closure)
- Weakness increases with fatigue
- Gradual onset of dysarthria with hypernasality is often the first symptom of a neuromuscular disease
Apraxia of Speech

- Motor speech disorder causing difficulty combining and sequencing motor movements
- Affects coordination of subsystems of speech:
 - Articulation
 - Phonation (voiced/voiceless errors)
 - Velopharyngeal function (oral/nasal errors)

Apraxia of Speech

- Poor coordination, timing, and duration of VP closure
- Velum goes up inappropriately for nasal sounds and down for oral sounds
- Inconsistent hypernasality/hyponasality
Velopharyngeal Mislearning

Causes:
- **Hearing Loss/Deafness**
- **Secondary to VPI**: Learned compensatory productions secondary to VPI
- **Secondary to Mislearning**: Misarticulations that *cause* nasal emission unrelated to a VPI
Hearing Loss/Deafness

- Need auditory feedback because there is no tactile-kinesthetic feedback of VP movement
- Results in a mixture of hyper- and hyponasality

“Hypernasality” due to Misarticulations

- Nasalization of vowels
 - Back of tongue too high on vowels
 - Can be phoneme-specific on the high vowel /i/
“Hypernasality” due to Misarticulations

- Substitution of nasal consonants for oral consonants (i.e., ng/l, ng/r)

Nasal Emission due to Misarticulation

- Due to pharyngeal or posterior nasal fricatives
- Causes *phoneme-specific nasal air emission* (PSNAE)
- Usually occurs on sibilants, particularly s/z
- Child is usually stimulable
Recommendations for VP Mislearning

- Speech therapy because this is a speech sound (articulation) disorder
- Surgery is NOT indicated!!!
- Differential diagnosis is very important!

Effects of Cleft Palate and VPI on Speech and Resonance

- Abnormal resonance (sound)
- Nasal air emission (airflow)
- Dysphonia (sound)
Abnormal Resonance due to CLP

• Hypernasality due to VPI or fistula
• Hyponasality or cul de sac resonance due to blockage

Nasal Air Emission

• Occurs with or without hypernasality
• *Air* leaks through the valve
• Occurs on high pressure consonants, particularly *voiceless consonants*
Types of Nasal Emission

- Large opening
- Small opening
 - Nasal Rustle (Turbulence)

Nasal Emission with Large Opening

- No impedance to airflow
- Soft, low intensity sound
- Affects articulation and utterance length
Nasal Emission with Large Opening

Can also cause:
- Weak or omitted consonants
- Short utterance length
- Nasal grimace
- Compensatory articulation productions

Weak or Omitted Consonants

- Greater the nasal air emission, the weaker the consonants will be due to loss of oral air pressure
- Affects pressure-sensitive consonants
Short Utterance Length

- Leak of air pressure causes need to increase respiratory effort and take more frequent breaths
- Utterance length becomes shortened

Nasal Grimace

- Contraction seen at side of nose or at nasal bridge
- Overflow muscle reaction in attempt to close VP valve
Compensatory Productions for Palatal Fistula

• Production is behind the fistula, before air can escape through it.

<table>
<thead>
<tr>
<th>Plosives (Stops)</th>
<th>Fricatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Velar plosive (backing of anterior sounds)</td>
<td>• Velar fricative</td>
</tr>
</tbody>
</table>

Velar Fricative
Compensatory Productions for VPI

Plosives (Stops)
- Pharyngeal plosives
- Glottal stops

Fricatives
- Pharyngeal fricatives
- Posterior nasal fricatives
- Glottal fricative (/h/)
- Nasal sniff

Pharyngeal Plosive
Glottal Stop
Can be Co-Articulated

Pharyngeal Fricative
Posterior Nasal Fricative

- Back of tongue articulates against velum
- Air pressure forced into pharynx
- VP valve opens for release of air pressure
- Causes phoneme-specific nasal air emission (PSNAE)
Glottal Fricative (/h/)

• Substituted for oral fricatives

Nasal Sniff

• Occurs as a substitution for sibilants, particularly /s/
• Usually occurs in the final word position
Compensatory Productions for VPI

- Manner of production is maintained
- Placement is in pharynx to take advantage of air flow
- VP valve will be opened during production, so there will be associated nasal emission

Compensatory Productions for VPI

- Nasal emission is due to production, so persists, even after surgery for VPI
- Speech therapy is needed postoperatively to correct placement (which will eliminate nasal emission)
Nasal Emission with Small Opening

- Characterized by an inconsistent nasal rustle (nasal turbulence)
- Due to *bubbling of secretions* as air forced through the small opening
- Distortion is loud and distracting
- Has no effect on strength of consonants or utterance length
- Usually does not occur with hypernasality

Nasal Emission with Small Opening

- Patient can usually close with effort
- Opening increases with motoric demands and fatigue
- Can correct “in therapy”- but child will not be able to maintain it
- Therefore, even a small structural gap will require surgical correction
Dysphonia

- Hoarseness
- Breathiness
- Abnormal pitch

- Vocal cord nodules due to strain in the vocal tract with VPI
- Laryngeal anomalies with craniofacial syndromes
- Compensatory strategy
 - Breathiness and low volume mask hypernasality and nasal emission
Prediction of Gap Size based on perceptual features

- Hypernasality, *inaudible* nasal emission, weak consonants, short utterance length, compensatory productions
- Hypernasality, *audible* nasal emission, weak consonants, may have compensatory productions
- Possibly mild hypernasality and audible nasal emission
- Normal resonance, but inconsistent nasal rustle (turbulence)